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According to the Lifshitz-Slezov theory of Ostwald ripening and its generalizations in the 
asymptotic stage of the competitive growth of an ensemble of clusters, a time-independent cluster 
size distribution in reduced coordinates is established. The shape of this distribution deviates, 
however, from the experimentally observed curves, which are in general broader and more 
symmetric. A number of different proposals have been developed in the literature for an 
explanation of this discrepancy. Here it is shown that the influence of stochastic effects on 
coarsening due to thermal noise, which has not been considered so far, may significantly diminish 
the gap between experiment and theory. 

1. Introduction 
The late stages of first-order phase transformations in 
solid or liquid solutions are often characterized by 
a growth of the larger (supercritical) clusters at the 
expense of the smaller (subcritical) ones, connected 
With a decrease of the number of clusters and an 
increase of their average size. This process of competi- 
tive coarsening is usually denoted as Ostwald ripening 
[i-5]. 

Though this phenomenon was well known from 
experiments, at least since the investigations of 
Ostwald [1] carried out at the beginning of our cen- 
tury, the first adequate theoretical description was 
developed only in 1958 by Lifshitz and Slezov [6-8]. 
The Lifshitz-Slezov theory is based on the solution of 
a set of three coupled equations: the growth equation 
for a single cluster, the continuity equation for the 
cluster size distribution function, and an expression 
for the conservation of the number of particles of the 
segregating component. Their work was extended by 
Wagner [9] and others to account for different mech- 
anisms of growth and a number of additional factors 
which may influence the process of Ostwald ripening 
[10-!6] (for an overview see e.g. [5, 10]). 

Independent of the particular mechanism of growth, 
the basic results of the theory turn out to be the same: 
the asymptotic stage of Ostwald ripening is character- 
ized by power laws for the time-dependence of the 
average cluster radius (R)  and the number of clusters 
N in the system, and a universal time-independent 
cluster size distribution is reduced coordinates. Quali- 
tatively, these theoretical results are confirmed by 
experiments. However, the observed experimental 
particle size distributions are broader and more sym- 
metric as compared with the predictions of the Lif- 
shitz-Slezov theory. 

A number of attempts have been made to resolve 
these difficulties. Proposals in this direction include 
qualitative modifications of the growth equations to 
account for non-steady-state effects in cluster growth 
[17], diffusional interaction of the growing or dissolv- 
ing clusters, coalescence, elastic strains, particular 
diffusion mechanisms, non-ideality of the system, 
multi-phase precipitation (for an overview see [18, 19] 
and the references cited therein). Marder [19] stressed 
in particular the influence of the diffusional interac- 
tion of the growing or dissolving clusters for the ob- 
served deviations of the Lifshitz-Slezov results from 
the experimental curves. 

Here we want to show that already in the frame- 
work of the mean-field theory of Lifshitz and Slezov 
the gap between experimental and theoretical results 
can be diminished if stochastic influences on the evolu- 
tion of the cluster size distribution are taken into 
account, resulting from the intrinsically random char- 
acter of processes of transport, incorporation and 
evaporation of monomers to and from the growing or 
dissolving clusters. Such stochastic effects are incorp- 
orated into the theory in the present study by descrip- 
tion of the evolution of the cluster size distribution 
function in terms of a Fokker-Planck equation [20]. 
Generalizations are, of course, possible. 

2. Basic equations 
By the introduction of a dimensionless time scale t' 
given by 

2oDe 
c - - -  t (~) 2 3 c~ kB TRco 

where ~ is the specific surface energy, D the bulk 
diffusion coefficient, c the equilibrium solubility of the 
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segregating particles in the matrix, c~ their volume 
concentration in the cluster phase, kB the Boltzmann 
constant, T the absolute temperature and Rco the 
critical cluster radius at t = 0, the commonly used 
growth equation for diffusion-limited growth of a 
cluster of radius R, namely 

dR 2crDc ( l ) ( 1  1 )  
dt - c~ksT -Rc (2) 

may be written in the form 

dR R3o (/~_r 1 )  
d t ' -  R (3) 

where Re is the actual critical cluster radius. It is 
determined by the difference between the chemical 
potentials per particle in the cluster phase (g~) and in 
the matrix (la~) via 

2cr 
Rc c~Ap. Ap = l-t~ g~ (4) 

R~o is its value for t = 0, the initial state of Ostwald 
ripening. 

For perfect solutions which we deal with in the 
following discussion, the critical cluster radius is deter- 
mined through the ratio of the actual (c~) and the 
equilibrium concentration (c) of the segregating par- 
ticles in the matrix via 

2or 
Ro = (5) 

c~kBTln(c~/c) 

As already mentioned, the Lifshitz-Slezov theory is 
based on Equation 3, the continuity equation for the 
cluster size distribution function f ( R ,  t') given by 

et' + (R, t') ~7 = 0 (6) 

and the mass balance equation for the segregating 
particles. With the introduction of the reduced radius 
u and a new time scale ~ given by 

u = ~ r = 3In (7) 
\ R c o J  

a size distribution in reduced variables r r) also 
enters the theory. Taking into account that the num- 
ber of clusters dN at any moment of time in an interval 
R to R + dR, and u to u + du can be expressed in two 
ways as shown by the equation 

dN = f ( R ,  t ')dR = f ( a ,  t')R~ d(n/Rc) = qb(u, ~) du 
(8) 

it becomes evident that the connection between 
f (R ,  t') and O(u, r) is of the form 

f ( n ,  t')Rc = ~(u, r) (9) 

In the asymptotic stage of Ostwald ripening O(u, r) is 
shown by Lifshitz and Slezov [6-8] to become 

�9 (u, z) = N(O)e-~P(u) (10) 

where P(u) is a universal time-independent cluster size 
distribution and N(0) the number of clusters at the 
beginning of the coarsening process. 

For diffusion-limited growth P(u) has a shape as 

described [6-8] by 

34eu 2 e x p [ -  3/(3 - 2u)] 
P(u) = 25/3(u + 3)7/3(3/2 _ u)11/3 u % 3/2 

(11) 
P(u)= 0 u > 3 / 2  

P(u) fulfils the normalization condition 

o~ du = 1 (12) 

Both Equations 3 and 6, underlying the original 
Lifshitz-Slezov theory, are purely deterministic equa- 
tions and, consequently, stochastic effects are not in- 
corporated in the theoretical description outlined so 
far. 

3. Introduction of stochastic effects 
into the theoretical description of 
Ostwald ripening 

In reality, deviations from the purely deterministic 
behaviour are always to be expected, connected with 
the intrinsically random character of the processes of 
transport of monomers to the cluster and of aggrega- 
tion and evaporation of monomers to and from the 
cluster surface. Such stochastic effects can be introduc- 
ed into the theory in the following way. 

Applying the basic assumptions of classical nuclea- 
tion theory, the evolution of the cluster size distribu- 
tion can be described by a system of rate equations of 
the form [21-23] 

~N(j, t) 
- -  J ( j  - 1, t )  - J ( j ,  t )  (13) 

5t 

J(j, t) = w+( j )N( j ,  t) - w - ( j  + 1)N(j + 1, t) 
(14) 

where N(j, t) is the number of clusters consisting at 
time t o f j  monomers. The coefficients of attachment 
w+(j)  and detachment w - ( j  + 1) of single particles 
(monomers) reflect the specific mechanism of cluster 
growth and decay. For diffusion-limited growth in 
three spatial dimensions w § (j) can be determined on 
the basis of the stationary solution of the diffusion 
equation. As the result one obtains for perfect solu- 
tions (see e.g. [24-26] for details) 

w + (j)  = 4rtDcR(j) (15) 

while w- is usually determined via the condition of 
detailed balancing. D is the diffusion coefficient of the 
segregating particles in the matrix. 

The condition of detailed balancing allows us to 
determine w - ( j  + 1) via Equation 16 as 

w - ( j  + 1) = 4r~DR(j) exp Ic~ T ( R ~ ) 1 2 c r  1 (16) 

where R( j )  is the radius of a spherical cluster consist- 
ing of j monomers. The relation between R and the 
monomer number j of a spherical cluster follows from 
simple geometrical considerations as 

( 3 "]1/3jl/3 
R( j )  = \~nc~] (17) 
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5N(j, t) 
St 

with 

S T) [ (j, ON(j, t)] 

1(0  ) 
+ ~ -~  [a(j, t) N(j, t)] (18) 

Here the notations 

v(j,t) = w + ( j , t ) -  w-( j , t )  

a(j,t) = w+(j,t) + w-( j , t )  

are used. 

(19) 

While the first term in Equation 18 describes the 
deterministically determined flow (the average growth 
rate) the second term reflects stochastic diffusion in 
cluster size space. 

To allow a direct comparison of solutions of the set 
of Equations 18 and 19 with the results of the 
Lifshitz-Slezov theory, formulated in terms of the 
cluster radii and the respective distribution functions, 
Equations 18 and 19 may be rewritten in the following 
equivalent form: 

Sf(R, t) S 
- -  [VR(R , t ) f ( R ,  t ) ]  

St SR 

+ ~ ~R 2 aR(R, t)f(R,t) 

(d2R']2]'~ 
x (20) 

JJ 

2.5-- 

dR 1 d Z R  
v~(R, t) = v(R, t)--- + ~ a(R, t ) ~  H (21) dj 

aR(R, t) = a(R, t) (dR'] 2 (22) 
\ d j ]  

In Equations 21 and 22 the monomer number j has to 
be replaced in the expressions for v(j, t) and a(j, t) by 
R according to Equation 17. For a solution of Equa- 
tion 20 the boundary and initial conditions have to be 
specified. They can be expressed in the usual way as 

S ( j , t = O ) = O  for j  ~> 2 
(23) 

N(j > g, t) = 0 

Further parameters used in the calculations are sum- 
marized in the caption to Fig. 1. 

In the figures are plotted not the distribution func- 
tionsf(R, t), but the distribution functions P(u, z) nor- 
malized to unity. The connection betweenf(R, t) and 
P(u, z) is given by Equations 5, 7, 9 and 24. We have 

P(u, z) - r z) (24) 

where P(u, z) is determined in such a way that for 
a purely deterministic description for t ~ ~ the 
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Lifshitz-Slezov result, given in an analytic form by 
Equation 11, Should be obtained. 

4. Results and discussion 
O(u, r)-curves normalized to unity resulting from the 
numerical solution of Equations 20-24 for diffusion- 
limited growth are presented in Figs 1 and 3. In Fig. 1 
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For the sufficiently large cluster sizes which we deal 
with in Ostwald ripening, the set of kinetic equations 
can be transformed into a Fokker-Planck equa- 
tion 1-20, 27, 28] by a Taylor expansion of the terms 
w+(j)N(j, t) and w - ( j  + 1)N(j + 1, t), including 
second-order terms, to give 
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Figure 1. Different stages in the time evolution of the cluster size 
distribution as obtained from a numerical solution of the 
Fokker -P lanck  Equation 20. The initial distribution consists of 
monomers  only. The different curves correspond to the following 
values of the reduced time: ( ) t' = 14, ( . . . )  t' = 63, (- - -) 
t ' =  260. As can be seen, for large values of time a stationary 
distribution is approached. The following values are assigned to the 
parameters used in the calculations: c~ = 0.23 x 1029 m - 3 ,  

D = 0.17 x 10- t  ~ m 2 s - 1 ,  t~ = 0.08 N m-2 ,  c = 0.86 x 1026 m-3 ,  C0 
( t = 0 ) = 0 . 8 6 x 1 0 2 8 m - a ,  T = 7 3 0 K .  They are related to 
a segregation process of silver chloride particles in a sodium borate 
melt (for details of the experimental situation see e.g. [25]). 
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Figure 2. C o m p a r i s o n  of ( ) the Lifshitz-Slezov asymptotic 
distribution with (- - -) the stationary distribution obtained from 
the solution of the Fokker-Planck  Equation 20 for large times. The 
incorporation of stochastic effects (thermal fluctuations) into the 
theory results  in a broadening and a more symmetric shape of the 
curve as compared with the theoretical result given by Equation 11. 
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between experimental and theoretical results is dis- 
cussed. Moreover, this effect is always present inde- 
pendent of any other of the above-mentioned mech- 
anisms which may or may not have an additional 
influence on coarsening. It will have a similar effect 
also for other mechanisms of cluster growth. 

The significance of this effect and the shape of the 
asymptotic distribution may depend on the actual 
values of the thermodynamic parameters employed in 
the calculations for the system considered and, as 
shown, on the intensity of the thermal (or possibly also 
external) noise. 
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Figure 3. Asymptotic distributions obtained from the solution of 
the Fokker-Planck Equation 20 with a modified aR-term 
(aR --~ c~aR) in comparison with ( ) the Lifshitz-Slezov analytical 
result given by Equation ! 1. The different curves correspond to the 
following values of the parameter ct: (- - -) ~ = 1, ( . . . )  ~ = 0.1, 
( - - - - - )  et = 2, ( - - - - - )  et = 10. The curves shown correspond to 
a value of the reduced time t ' =  260. For values of the other 
parameters see the caption to Fig. 1. 

the distribution function is shown for different mo- 
ments of time. It can be seen that for large values of 
time a time-independent cluster size distribution is 
approached. However, the shape of the distribution 
deviates from the form predicted by the 
Lifshitz-Slezov theory. This is illustrated in Fig. 2, 
where the curve numerically obtained for large times is 
compared with the analytic solution given by Equa- 
tion 11. 

Fig. 3 shows the results of similar numerical calcu- 
lations but this time with a modified stochastic term, 
resulting from the original expression by a multiplica- 
tion ofaR with a numerical factor ct. Different values of 

were chosen to demonstrate that the intensity of 
stochastic fluctuations is indeed responsible for the 
broadening of the distribution function observed in 
the numerical calculations. 

Again, time-independent distributions are estab- 
lished in the course of the evolution. The degree of 
broadening of the shape of the distribution increases 
with an increase of the intensity of the thermal noise 
(increase of the value of ~) and vice versa. Conse- 
quently, stochastic fluctuations in cluster size space 
lead, indeed, to a decrease of the gap between experi- 
mental results and theoretical description. A summary 
of experimental results which in this respect verify the 
statement made above can be found, for example, in 
the paper by Marder [19] (see also [10, 18]). 

To avoid a misunderstanding we would like to 
underline, finally, that it is not the aim of the present 
contribution to distinguish stochastic on coarsening 
as the only possible mechanism for a broadening of 
the cluster size distribution. However, as shown, it has 
a significant influence on the shape of the distribution, 
at least, for intermediate time scales and has to 
be taken into account, consequently, if the relation 
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